Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neurol Belg ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575842

RESUMO

BACKGROUND: Writer's cramp is a task-specific focal hand dystonia, which is diagnosed clinically. Quantification of defect in WC is done using clinical scales, while digitized platforms are lacking. OBJECTIVE: To design and test a platform that can differentiate and quantify the abnormal kinematics of writing using a software interface and to validate it in adult-onset isolated writer's cramp (WC). METHODS: A native platform was designed using Java and Wacom Intuos pro tablet and the data analyzed using a MATLAB-based platform called Large Data-Based Evaluation of Kinematics in Handwriting (LEKH). We standardized this new platform by comparing the handwriting between patients with WC and age, and gender and education-matched healthy controls, using standard tasks to assess the kinematics. RESULTS: Comparison of the writing of right-handed WC patients (N = 21) and 39 healthy controls (N = 39) showed that patients differed from controls in the frequency of strokes (P < 0.001), number of inversions of velocity (P < 0.001), number of breaks (P = 0.02), air time and paper time (P < 0.001). CONCLUSIONS: Using the LEKH platform, the kinematic profile of patients with WC could be differentiated from healthy controls. Studies in larger samples will be needed to derive statistical models that can differentiate the flexion and extension types of WC which can help in muscle selection and to quantify the effects of treatment.

2.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465956

RESUMO

Intravenous (iv) injection is the most used route of drug administration in neonates in the clinical setting. Therefore, retroorbital vein injection is an important method for compound administration in research, where successful proof-of-concept studies can progress into much-needed neonatal clinical trials. Most intravenous studies in neonatal rodents use the superficial temporal/facial vein. However, retroorbital injection becomes unreliable in neonatal rodents older than 2 days after the skin darkens and the vein is no longer visible. In the present protocol, we describe the retroorbital injection of the venous sinus in both the neonatal mouse and rat at ages when the superficial temporal vein is no longer visible, but the eyes have not opened yet. Eye-opening facilitates retro-orbital injection by enabling the researcher to clearly see that they are not perforating the eye when inserting the needle. We demonstrate that this technique can be performed in a reliable and reproducible manner without adverse effects. Additionally, we show that it can be used in many studies, such as administering compounds to study neonatal brain injury.


Assuntos
Olho , Roedores , Animais , Camundongos , Ratos , Injeções Intravenosas , Órbita , Veia Subclávia
3.
Hepatol Commun ; 7(4)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930872

RESUMO

BACKGROUND: NAFLD has become the leading cause of chronic liver disease worldwide afflicting about one quarter of the adult population. NASH is a severe subtype of NAFLD, which in addition to hepatic steatosis connotes liver inflammation and hepatocyte ballooning. In light of the exponentially increasing prevalence of NAFLD, it is imperative to gain a better understanding of its molecular pathogenesis. The aim of this study was to examine the potential role of STE20-type kinase TAOK1 -a hepatocellular lipid droplet-associated protein-in the regulation of liver lipotoxicity and NAFLD etiology. METHODS: The correlation between TAOK1 mRNA expression in liver biopsies and the severity of NAFLD was evaluated in a cohort of 62 participants. Immunofluorescence microscopy was applied to describe the subcellular localization of TAOK1 in human and mouse hepatocytes. Metabolic reprogramming and oxidative/endoplasmic reticulum stress were investigated in immortalized human hepatocytes, where TAOK1 was overexpressed or silenced by small interfering RNA, using functional assays, immunofluorescence microscopy, and colorimetric analysis. Migration, invasion, and epithelial-mesenchymal transition were examined in TAOK1-deficient human hepatoma-derived cells. Alterations in hepatocellular metabolic and pro-oncogenic signaling pathways were assessed by immunoblotting. RESULTS: We observed a positive correlation between the TAOK1 mRNA abundance in human liver biopsies and key hallmarks of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Furthermore, we found that TAOK1 protein fully colocalized with intracellular lipid droplets in human and mouse hepatocytes. The silencing of TAOK1 alleviated lipotoxicity in cultured human hepatocytes by accelerating lipid catabolism (mitochondrial ß-oxidation and triacylglycerol secretion), suppressing lipid anabolism (fatty acid influx and lipogenesis), and mitigating oxidative/endoplasmic reticulum stress, and the opposite changes were detected in TAOK1-overexpressing cells. We also found decreased proliferative, migratory, and invasive capacity, as well as lower epithelial-mesenchymal transition in TAOK1-deficient human hepatoma-derived cells. Mechanistic studies revealed that TAOK1 knockdown inhibited ERK and JNK activation and repressed acetyl-CoA carboxylase (ACC) protein abundance in human hepatocytes. CONCLUSIONS: Together, we provide the first experimental evidence supporting the role of hepatic lipid droplet-decorating kinase TAOK1 in NAFLD development through mediating fatty acid partitioning between anabolic and catabolic pathways, regulating oxidative/endoplasmic reticulum stress, and modulating metabolic and pro-oncogenic signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Ácidos Graxos , Inflamação , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo , Inativação Gênica
4.
J Lipid Res ; 63(7): 100238, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679904

RESUMO

The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases. The aim of this study was to decipher the possible role of STE20-type kinase MAP4K4 in the regulation of hepatocellular lipotoxicity and susceptibility to NAFLD. We found that MAP4K4 mRNA expression in human liver biopsies was positively correlated with key hallmarks of NAFLD (i.e., liver steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis). We also found that the silencing of MAP4K4 suppressed lipid deposition in human hepatocytes by stimulating ß-oxidation and triacylglycerol secretion, while attenuating fatty acid influx and lipid synthesis. Furthermore, downregulation of MAP4K4 markedly reduced the glycolysis rate and lowered incidences of oxidative/endoplasmic reticulum stress. In parallel, we observed suppressed JNK and ERK and increased AKT phosphorylation in MAP4K4-deficient hepatocytes. Together, these results provide the first experimental evidence supporting the potential involvement of STE20-type kinase MAP4K4 as a component of the hepatocellular lipotoxic milieu promoting NAFLD susceptibility.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Hepatócitos/metabolismo , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Serina-Treonina Quinases , Triglicerídeos/metabolismo
5.
Cells ; 11(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406757

RESUMO

Hypoxia-ischemia (HI) leads to immature brain injury mediated by mitochondrial stress. If damaged mitochondria cannot be repaired, mitochondrial permeabilization ensues, leading to cell death. Non-optimal turnover of mitochondria is critical as it affects short and long term structural and functional recovery and brain development. Therefore, disposal of deficient mitochondria via mitophagy and their replacement through biogenesis is needed. We utilized mt-Keima reporter mice to quantify mitochondrial morphology (fission, fusion) and mitophagy and their mechanisms in primary neurons after Oxygen Glucose Deprivation (OGD) and in brain sections after neonatal HI. Molecular mechanisms of PARK2-dependent and -independent pathways of mitophagy were investigated in vivo by PCR and Western blotting. Mitochondrial morphology and mitophagy were investigated using live cell microscopy. In primary neurons, we found a primary fission wave immediately after OGD with a significant increase in mitophagy followed by a secondary phase of fission at 24 h following recovery. Following HI, mitophagy was upregulated immediately after HI followed by a second wave at 7 days. Western blotting suggests that both PINK1/Parkin-dependent and -independent mechanisms, including NIX and FUNDC1, were upregulated immediately after HI, whereas a PINK1/Parkin mechanism predominated 7 days after HI. We hypothesize that excessive mitophagy in the early phase is a pathologic response which may contribute to secondary energy depletion, whereas secondary mitophagy may be involved in post-HI regeneration and repair.


Assuntos
Mitofagia , Ubiquitina-Proteína Ligases , Animais , Glucose , Hipóxia , Isquemia , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Food Chem ; 381: 132010, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131121

RESUMO

Molecular imprinting technique (MIT) with electrochemical sensing provides an attractive tool for the fabrication of sensors. Incorporation of conducting copolymer and surface imprinting strategies in the sensing device improves the conducting properties and poor template accessibility, slow binding kinetics at the same time. Here, this technique was employed with conducting polymers with multi-walled carbon nanotubes (MWCNT) to build an electrochemical sensor for detecting Chlorpyrifos (CPF) in vegetable sample solutions. In this work, we aimed at synthesizing a copolymer of 3-thiophene acetic acid and 3,4-ethylene dioxythiophene on the surface of MWCNT. We further constructed a polymer drop-casted glassy carbon electrode sensor for ultrasensitive detection CPF. Under optimal conditions, the sensor exhibited a very low limit of detection (LOD) of 4.0 × 10-12 M for CPF. Due to the excellent repeatability and reusability of the materials, this study and findings have potential applications in the monitoring of pesticides from vegetable samples.


Assuntos
Clorpirifos , Impressão Molecular , Nanotubos de Carbono , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Impressão Molecular/métodos , Nanotubos de Carbono/química , Polímeros/química , Tiofenos
7.
Hepatol Commun ; 5(7): 1183-1200, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34278168

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide, primarily because of the massive global increase in obesity. Despite intense research efforts in this field, the factors that govern the initiation and subsequent progression of NAFLD are poorly understood, which hampers the development of diagnostic tools and effective therapies in this area of high unmet medical need. Here we describe a regulator in molecular pathogenesis of NAFLD: STE20-type protein kinase MST4. We found that MST4 expression in human liver biopsies was positively correlated with the key features of NAFLD (i.e., hepatic steatosis, lobular inflammation, and hepatocellular ballooning). Furthermore, the silencing of MST4 attenuated lipid accumulation in human hepatocytes by stimulating ß-oxidation and triacylglycerol secretion, while inhibiting fatty acid influx and lipid synthesis. Conversely, overexpression of MST4 in human hepatocytes exacerbated fat deposition by suppressing mitochondrial fatty acid oxidation and triacylglycerol efflux, while enhancing lipogenesis. In parallel to these reciprocal alterations in lipid storage, we detected substantially decreased or aggravated oxidative/endoplasmic reticulum stress in human hepatocytes with reduced or increased MST4 levels, respectively. Interestingly, MST4 protein was predominantly associated with intracellular lipid droplets in both human and rodent hepatocytes. Conclusion: Together, our results suggest that hepatic lipid droplet-decorating protein MST4 is a critical regulatory node governing susceptibility to NAFLD and warrant future investigations to address the therapeutic potential of MST4 antagonism as a strategy to prevent or mitigate the development and aggravation of this disease.

8.
Genes Dev ; 35(15-16): 1190-1207, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301765

RESUMO

The meninges are important for brain development and pathology. Using single-cell RNA sequencing, we have generated the first comprehensive transcriptional atlas of neonatal mouse meningeal leukocytes under normal conditions and after perinatal brain injury. We identified almost all known leukocyte subtypes and found differences between neonatal and adult border-associated macrophages, thus highlighting that neonatal border-associated macrophages are functionally immature with regards to immune responses compared with their adult counterparts. We also identified novel meningeal microglia-like cell populations that may participate in white matter development. Early after the hypoxic-ischemic insult, neutrophil numbers increased and they exhibited increased granulopoiesis, suggesting that the meninges are an important site of immune cell expansion with implications for the initiation of inflammatory cascades after neonatal brain injury. Our study provides a single-cell resolution view of the importance of meningeal leukocytes at the early stage of development in health and disease.


Assuntos
Meninges , Microglia , Animais , Encéfalo/patologia , Feminino , Leucócitos , Macrófagos , Camundongos , Gravidez
9.
Dev Neurosci ; 43(5): 296-311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34130282

RESUMO

Microglia may contribute to injury but may also have neuroprotective properties. Galectin-3 has immunomodulatory properties that may affect the microglia phenotype and subsequent development of injury. Galectin-3 contributes to experimental hypoxic-ischemic (HI) injury in the neonatal brain, but it is unclear if galectin-3 has similar effects on infectious and sterile inflammation. Thus, we investigated the effect of galectin-3 on microglia in vitro under normal as well as infectious and sterile inflammatory conditions, and the effect of galectin-3 on neonatal brain injury following an infectious challenge in vivo. Conditions mimicking infectious or sterile inflammation were evaluated in primary microglia cell cultures from newborn mice, using LPS (10 ng/mL) and TNF-α (100 ng/mL). The response to galectin-3 was tested alone or together with LPS or TNF-α. Supernatants were collected 24 h after treatment and analyzed for 23 inflammatory mediators including pro- and anti-inflammatory cytokines and chemokines using multiplex protein analysis, as well as ELISA for MCP-1 and insulin-like growth factor (IGF)-1. Phosphorylation of proteins (AKT, ERK1/2, IκB-α, JNK, and p38) was determined in microglia cells. Neonatal brain injury was induced by a combination of LPS and HI (LPS + HI) in postnatal day 9 transgenic mice lacking functional galectin-3 and wild-type controls. LPS and TNF-α induced pro-inflammatory (9/11 vs. 9/10) and anti-inflammatory (6/6 vs. 2/6) cytokines, as well as chemokines (6/6 vs. 4/6) in a similar manner, except generally lower amplitude of the TNF-α-induced response. Galectin-3 alone had no effect on any of the proteins analyzed. Galectin-3 reduced the LPS- and TNF-α-induced microglia response for cytokines, chemokines, and phosphorylation of IκB-α. LPS decreased baseline IGF-1 levels, and the levels were restored by galectin-3. Brain injury or microglia response after LPS + HI was not affected by galectin-3 deficiency. Galectin-3 has no independent effect on microglia but modulates inflammatory activation in vitro. The effect was similar under infectious and sterile inflammatory conditions, suggesting that galectin-3 regulates inflammation not just by binding to LPS or toll-like receptor-4. Galectin-3 restores IGF-1 levels reduced by LPS-induced inflammation, suggesting a potential protective effect on infectious injury. However, galectin-3 deficiency did not affect microglia activation and was not beneficial in an injury model encompassing an infectious challenge.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Animais , Animais Recém-Nascidos , Galectina 3 , Inflamação , Lipopolissacarídeos/toxicidade , Camundongos , Microglia
10.
J Neurochem ; 158(1): 59-73, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33314066

RESUMO

Preclinical studies have shown that mesenchymal stem cells have a positive effect in perinatal brain injury models. The mechanisms that cause these neurotherapeutic effects are not entirely intelligible. Mitochondrial damage, inflammation, and reactive oxygen species are considered to be critically involved in the development of injury. Mesenchymal stem cells have immunomodulatory action and exert mitoprotective effects which attenuate production of reactive oxygen species and promote restoration of tissue function and metabolism after perinatal insults. This review summarizes the present state, the underlying causes, challenges and possibilities for effective clinical translation of mesenchymal stem cell therapy.


Assuntos
Lesões Encefálicas/congênito , Lesões Encefálicas/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Neuroproteção , Animais , Animais Recém-Nascidos , Lesões Encefálicas/imunologia , Humanos , Recém-Nascido , Inflamação/imunologia , Inflamação/patologia , Inflamação/terapia
11.
Front Cell Neurosci ; 14: 535320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343300

RESUMO

Germinal matrix hemorrhage (GMH) is a serious complication in extremely preterm infants associated with neurological deficits and mortality. The purpose of the present study was to develop and characterize a grade III and IV GMH model in postnatal day 5 (P5) rats, the equivalent of preterm human brain maturation. P5 Wistar rats were exposed to unilateral GMH through intracranial injection into the striatum close to the germinal matrix with 0.1, 0.2, or 0.3 U of collagenase VII. During 10 days following GMH induction, motor functions and body weight were assessed and brain tissue collected at P16. Animals were tested for anxiety, motor coordination and motor asymmetry on P22-26 and P36-40. Using immunohistochemical staining and neuropathological scoring we found that a collagenase dose of 0.3 U induced GMH. Neuropathological assessment revealed that the brain injury in the collagenase group was characterized by dilation of the ipsilateral ventricle combined with mild to severe cellular necrosis as well as mild to moderate atrophy at the levels of striatum and subcortical white matter, and to a lesser extent, hippocampus and cortex. Within 0.5 h post-collagenase injection there was clear bleeding at the site of injury, with progressive increase in iron and infiltration of neutrophils in the first 24 h, together with focal microglia activation. By P16, blood was no longer observed, although significant gray and white matter brain infarction persisted. Astrogliosis was also detected at this time-point. Animals exposed to GMH performed worse than controls in the negative geotaxis test and also opened their eyes with latency compared to control animals. At P40, GMH rats spent more time in the center of open field box and moved at higher speed compared to the controls, and continued to show ipsilateral injury in striatum and subcortical white matter. We have established a P5 rat model of collagenase-induced GMH for the study of preterm brain injury. Our results show that P5 rat pups exposed to GMH develop moderate brain injury affecting both gray and white matter associated with delayed eye opening and abnormal motor functions. These animals develop hyperactivity and show reduced anxiety in the juvenile stage.

12.
Mater Sci Eng C Mater Biol Appl ; 102: 437-446, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147014

RESUMO

Owing to poor skin permeability, the transdermal (TRD) drug delivery at the required therapeutic rate still remains an arduous task. In the present investigation, a novel TRD enhancement strategy was introduced using the synergistic effect of gold nanoparticle (GNP) and skin electroporation. Diclofenac sodium (DS) was selected as a model drug. An electro-sensitive patch was constructed using skin adhesive matrix, polyvinyl alcohol/poly(dimethyl siloxane)-g-polyacrylate. GNP/carbon nanotube nanocomposite (GNP-CNT) was incorporated into the matrix with GNP and CNT to enhance skin permeability and electrical conductivity, respectively. Varying the concentration of GNP-CNT, alters the thermomechanical properties, water vapor permeability (WVP), drug encapsulation efficiency (DEE) and drug release profile, building a possibility to fine-tune the properties of the device. The membrane constructed with 1.5% GNP-CNT displayed the highest DEE and thermomechanical properties. The TRD DS release study was performed in rat skin at different GNP-CNT contents and variable conditions of applied voltage. Incorporating GNP-CNT enhanced the DS permeation profile with the best performance exhibited by device containing 1.5% nanofillers at an applied bias of 10.0 V. Electroporation in conjugation with GNP remarkably destroys the stratum corneum (SC) barrier by disparate mechanisms involving the breakdown of multilamellar lipid system, generation of new aqueous pathway and thermal effect. Furthermore, the dramatic disruption of lipid barriers generated by applied voltage was efficiently stabilized by GNP in addition to the transient and reversible openings created by them. Finally the safety of the device was confirmed by cell viability assay and environmental stability test. The developed skin permeation approach may open new avenues in TRD drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Eletricidade , Eletroporação/métodos , Ouro/química , Nanopartículas Metálicas/química , Absorção Cutânea , Administração Cutânea , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diclofenaco/farmacologia , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Nanopartículas Metálicas/ultraestrutura , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Permeabilidade , Ratos , Vapor , Propriedades de Superfície , Resistência à Tração , Termogravimetria
13.
Sci Rep ; 9(1): 6909, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061399

RESUMO

Myocardial dysfunction is commonly associated with accumulation of cardiac lipid droplets (LDs). Perilipin 2 (Plin2) is a LD protein that is involved in LD formation, stability and trafficking events within the cell. Even though Plin2 is highly expressed in the heart, little is known about its role in myocardial lipid storage. A recent report shows that cardiac overexpression of Plin2 result in massive myocardial steatosis suggesting that Plin2 stabilizes LDs. In this study, we hypothesized that deficiency in Plin2 would result in reduced myocardial lipid storage. In contrast to our hypothesis, we found increased accumulation of triglycerides in hearts, and specifically in cardiomyocytes, from Plin2-/- mice. Although Plin2-/- mice had markedly enhanced lipid levels in the heart, they had normal heart function under baseline conditions and under mild stress. However, after an induced myocardial infarction, stroke volume and cardiac output were reduced in Plin2-/- mice compared with Plin2+/+ mice. We further demonstrated that the increased triglyceride accumulation in Plin2-deficient hearts was caused by altered lipophagy. Together, our data show that Plin2 is important for proper hydrolysis of LDs.


Assuntos
Autofagia , Metabolismo dos Lipídeos , Miocárdio/citologia , Miocárdio/metabolismo , Perilipina-2/deficiência , Animais , Respiração Celular , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Triglicerídeos/metabolismo
14.
Antioxid Redox Signal ; 31(9): 643-663, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30957515

RESUMO

Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.


Assuntos
Lesões Encefálicas/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Lesões Encefálicas/etiologia , Estresse do Retículo Endoplasmático , Metabolismo Energético , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Mitofagia , Oxirredutases/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
15.
Glia ; 67(6): 1047-1061, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30637805

RESUMO

Accumulating evidence suggests that changes in the metabolic signature of microglia underlie their response to inflammation. We sought to increase our knowledge of how pro-inflammatory stimuli induce metabolic changes. Primary microglia exposed to lipopolysaccharide (LPS)-expressed excessive fission leading to more fragmented mitochondria than tubular mitochondria. LPS-mediated Toll-like receptor 4 (TLR4) activation also resulted in metabolic reprogramming from oxidative phosphorylation to glycolysis. Blockade of mitochondrial fission by Mdivi-1, a putative mitochondrial division inhibitor led to the reversal of the metabolic shift. Mdivi-1 treatment also normalized the changes caused by LPS exposure, namely an increase in mitochondrial reactive oxygen species production and mitochondrial membrane potential as well as accumulation of key metabolic intermediate of TCA cycle succinate. Moreover, Mdivi-1 treatment substantially reduced LPS induced cytokine and chemokine production. Finally, we showed that Mdivi-1 treatment attenuated expression of genes related to cytotoxic, repair, and immunomodulatory microglia phenotypes in an in vivo neuroinflammation paradigm. Collectively, our data show that the activation of microglia to a classically pro-inflammatory state is associated with a switch to glycolysis that is mediated by mitochondrial fission, a process which may be a pharmacological target for immunomodulation.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Metabolismo Energético/fisiologia , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Gravidez
16.
J Cereb Blood Flow Metab ; 39(6): 1038-1055, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29206066

RESUMO

Magnesium sulphate (MgSO4) given to women in preterm labor reduces cerebral palsy in their offspring but the mechanism behind this protection is unclear, limiting its effective, safe clinical implementation. Previous studies suggest that MgSO4 is not neuroprotective if administered during or after the insult, so we hypothesised that MgSO4 induces preconditioning in the immature brain. Therefore, we administered MgSO4 at various time-points before/after unilateral hypoxia-ischemia (HI) in seven-day-old rats. We found that MgSO4 treatment administered as a bolus between 6 days and 12 h prior to HI markedly reduced the brain injury, with maximal protection achieved by 1.1 mg/g MgSO4 administered 24 h before HI. As serum magnesium levels returned to baseline before the induction of HI, we ascribed this reduction in brain injury to preconditioning. Cerebral blood flow was unaffected, but mRNAs/miRNAs involved in mitochondrial function and metabolism were modulated by MgSO4. Metabolomic analysis (H+-NMR) disclosed that MgSO4 attenuated HI-induced increases in succinate and prevented depletion of high-energy phosphates. MgSO4 pretreatment preserved mitochondrial respiration, reducing ROS production and inflammation after HI. Therefore, we propose that MgSO4 evokes preconditioning via induction of mitochondrial resistance and attenuation of inflammation.


Assuntos
Encéfalo/efeitos dos fármacos , Precondicionamento Isquêmico/métodos , Magnésio/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Inflamação/prevenção & controle , Magnésio/uso terapêutico , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
17.
Bioconjug Chem ; 29(10): 3262-3272, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30204414

RESUMO

Gold nanoparticles (AuNP) have attracted ample attention as a transdermal (TND) drug delivery platform for improving the skin permeability of drug molecules. Herein a novel TND device formed from AuNP and oleylamine functionalized nanodiamond (AuD) has been developed successfully for the TND delivery of Ketoprofen (KP), a model drug. Poly(vinyl alcohol)/Polybutyl methacrylate (PVA/PBMA) film has been selected as the matrix of the TND device, as they furnish excellent skin adhesion properties. The PVA/PBMA membranes loaded with different concentrations of AuD have been characterized in terms of surface morphology, thermomechanical properties, water vapor permeability (WVP), optical transmittance, cosmetic attractiveness, skin adhesion behavior, and drug encapsulation efficiency (DEE). The matrix loaded with 3.0% AuD displayed enhanced thermomechanical and DEE due to the uniform distribution of nanofillers in the membrane. The in vitro skin permeation test proved that a higher amount of KP was delivered by AuD incorporated films, suggesting improved TND behavior. The synergistic management of AuNP and nanodiamonds (ND) has caused the enhanced skin permeation behavior of the device. The obtained results revealed that AuD may be employed as an effective carrier to substitute NDs for TND delivery. Additionally, while investigating the storage stability of the device we observed that the membrane kept at low temperature presented stability over time. More importantly, the results from cell viability assay and environmental fitness test revealed that the AuD based TND system is a high security device, as it is noncytotoxic and microbe-resistant. The developed device provides a novel and handy approach to the TND delivery of drug molecules.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanodiamantes/química , Fenômenos Fisiológicos da Pele , Anti-Inflamatórios não Esteroides/administração & dosagem , Sinergismo Farmacológico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cetoprofeno/administração & dosagem , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Permeabilidade , Ácidos Polimetacrílicos/química , Álcool de Polivinil/química , Absorção Cutânea , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
18.
Brain ; 141(10): 2925-2942, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165597

RESUMO

Hypoxic-ischaemic encephalopathy remains a global health burden. Despite medical advances and treatment with therapeutic hypothermia, over 50% of cooled infants are not protected and still develop lifelong neurodisabilities, including cerebral palsy. Furthermore, hypothermia is not used in preterm cases or low resource settings. Alternatives or adjunct therapies are urgently needed. Exendin-4 is a drug used to treat type 2 diabetes mellitus that has also demonstrated neuroprotective properties, and is currently being tested in clinical trials for Alzheimer's and Parkinson's diseases. Therefore, we hypothesized a neuroprotective effect for exendin-4 in neonatal neurodisorders, particularly in the treatment of neonatal hypoxic-ischaemic encephalopathy. Initially, we confirmed that the glucagon like peptide 1 receptor (GLP1R) was expressed in the human neonatal brain and in murine neurons at postnatal Day 7 (human equivalent late preterm) and postnatal Day 10 (term). Using a well characterized mouse model of neonatal hypoxic-ischaemic brain injury, we investigated the potential neuroprotective effect of exendin-4 in both postnatal Day 7 and 10 mice. An optimal exendin-4 treatment dosing regimen was identified, where four high doses (0.5 µg/g) starting at 0 h, then at 12 h, 24 h and 36 h after postnatal Day 7 hypoxic-ischaemic insult resulted in significant brain neuroprotection. Furthermore, neuroprotection was sustained even when treatment using exendin-4 was delayed by 2 h post hypoxic-ischaemic brain injury. This protective effect was observed in various histopathological markers: tissue infarction, cell death, astrogliosis, microglial and endothelial activation. Blood glucose levels were not altered by high dose exendin-4 administration when compared to controls. Exendin-4 administration did not result in adverse organ histopathology (haematoxylin and eosin) or inflammation (CD68). Despite initial reduced weight gain, animals restored weight gain following end of treatment. Overall high dose exendin-4 administration was well tolerated. To mimic the clinical scenario, postnatal Day 10 mice underwent exendin-4 and therapeutic hypothermia treatment, either alone or in combination, and brain tissue loss was assessed after 1 week. Exendin-4 treatment resulted in significant neuroprotection alone, and enhanced the cerebroprotective effect of therapeutic hypothermia. In summary, the safety and tolerance of high dose exendin-4 administrations, combined with its neuroprotective effect alone or in conjunction with clinically relevant hypothermia make the repurposing of exendin-4 for the treatment of neonatal hypoxic-ischaemic encephalopathy particularly promising.


Assuntos
Encéfalo/efeitos dos fármacos , Exenatida/farmacologia , Hipóxia-Isquemia Encefálica/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Hipotermia Induzida , Camundongos
19.
FEBS Lett ; 592(5): 812-830, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29265370

RESUMO

Hypoxic-ischaemic encephalopathy, resulting from asphyxia during birth, affects 2-3 in every 1000 term infants and depending on severity, brings about life-changing neurological consequences or death. This hypoxic-ischaemia (HI) results in a delayed neural energy failure during which the majority of brain injury occurs. Currently, there are limited treatment options and additional therapies are urgently required. Mitochondrial dysfunction acts as a focal point in injury development in the immature brain. Not only do mitochondria become permeabilised, but recent findings implicate perturbations in mitochondrial dynamics (fission, fusion), mitophagy and biogenesis. Mitoprotective therapies may therefore offer a new avenue of intervention for babies who suffer lifelong disabilities due to birth asphyxia.


Assuntos
Asfixia Neonatal/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Biogênese de Organelas , Asfixia Neonatal/genética , Asfixia Neonatal/patologia , Humanos , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/patologia , Recém-Nascido , Mitocôndrias/genética , Mitocôndrias/patologia
20.
ACS Appl Mater Interfaces ; 9(51): 44377-44391, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29210562

RESUMO

Transdermal (TD) drug delivery is a more attractive technique for drug delivery compared to oral and intravenous injection. However, the permeation of drug molecules across the skin is difficult due to the presence of highly ordered lipid barrier. This study details the development of a novel TD system, which has the potential to simultaneously enhance the skin permeability and adhesion behavior. Ibuprofen (IP) was selected as model drug. The ability of gold nanoparticle (AuNP) and hydrophobic titanium nanotube (TNT) to enhance the skin permeability was explored. Additionally, ß-cyclodextrin (ßCD), which can exceptionally encapsulate poorly water-soluble drugs, is grafted with methacrylates to improve the skin adhesion property. Finally, Au-TNT nanocomposite was deposited onto methacrylate-grafted ßCD matrix. The developed material was characterized through NMR spectroscopy, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The characteristics of the film, including water vapor permeability (WVP), thermomechanical properties, etc., were examined in terms of Au-TNT content. The TD delivery of IP with different concentrations of Au-TNT was evaluated via an in vitro skin permeation study through rat skin. It is revealed that the prepared TD film exhibited an improved drug-delivery performance due to the synergistic action of AuNP and hydrophobic TNT. The cumulative percent of IP delivered across the skin is extremely depending on nanofiller content, lipophilicity, and thickness of the membrane, and the device incorporated with 4.0% Au-TNT displayed the best performance. In addition, a study on storage stability was performed by storing the films for 2 months at different temperatures. The study revealed that the device possessed excellent storage stability when stored at low temperature. The developed film offers excellent WVP, drug encapsulation efficiency, thermomechanical properties, and skin adhesion behavior. Moreover, the device was cosmetically attractive, noncytotoxic, and resistant to microbial growth and hence extremely reliable for skin application. The developed skin permeation strategy may open new avenues in TD drug delivery.


Assuntos
beta-Ciclodextrinas/química , Adesivos , Animais , Sistemas de Liberação de Medicamentos , Ouro , Nanopartículas Metálicas , Metacrilatos , Permeabilidade , Ratos , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...